Abstract

Coefficients of thermal expansion (CTEs) are an essential design criterion of the three-dimensional carbon fiber reinforced SiC matrix composites (3D C/SiC). Representative volume element (RVE) models of microscale, void/matrix, and mesoscale developed in this work were used to investigate the CTEs of these composites. A coupled temp-displacement steady-state analysis step was created for assessing the thermal expansions behaviors of the composites by applying periodic displacement and temperature boundary conditions. Three RVE models of cuboid, hexagonal and fiber random distribution were respectively established to comparatively study the influence of fiber package pattern on the CTEs at microscale. Similarly, the effects of different void size, locations, and shapes on the CTEs of the matrix are comparatively analyzed by the void/matrix models. The prediction results at mesoscale corresponded closely to the experimental results. The effect of the porosities on the CTEs was studied by the void/matrix RVE models. The voids were effective in lowering the CTE of the 3D C/SiC composites. Furthermore, the effect of fiber volume fractions on the CTE were also taken into consideration. Equal in-plane and out-of-plane CTEs were realized by selecting appropriate fiber volume fractions for the different directions. The multiscale models developed in this work can be used to predict the thermal expansion behaviors of other complex structure composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call