Abstract
Chronic hepatitis B virus (HBV) infection is strongly associated with increased risk of liver cancer and cirrhosis. While existing treatments effectively inhibit the HBV life cycle, viral rebound occurs rapidly following treatment interruption. Consequently, functional cure rates of chronic HBV infection remain low and there is increased interest in a novel treatment modality, capsid assembly modulators (CAMs). Here, we develop a multiscale mathematical model of CAM treatment in chronic HBV infection. By fitting the model to participant data from a phase I trial of the first-generation CAM vebicorvir, we estimate the drug's dose-dependent effectiveness and identify the physiological mechanisms that drive the observed biphasic decline in HBV DNA and RNA, and mechanistic differences between HBeAg-positive and negative infection. Finally, we demonstrate analytically and numerically that HBV RNA is more sensitive than HBV DNA to increases in CAM effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.