Abstract
Copper oxide is one of the promising oxygen carrier materials in chemical looping with oxygen uncoupling (CLOU) technology, cycling between Cu2O and CuO. In this study, a multiscale model was developed to describe the oxidation kinetics of the Cu-based oxygen carrier particle with oxygen, including surface, grain, and particle scale. It was considered that the solid product grows with the morphology of disperse islands on the grain surface, and O2 contacts with two different kinds of grain surfaces in the grain scale model, that is, Cu2O surface (solid reactant surface) and CuO surface (solid product surface). The two-stage behavior of the oxidation reaction of the Cu-based oxygen carrier was predicted successfully using the developed model, and the model results showed good agreement with experimental data in the literature. The effects of oxygen partial pressure, temperature, and particle structure on the oxidation performance were analyzed. The modeling results indicated that the transition of the conversion curve occurs when product islands cover most part of the grain surface. The oxygen partial pressure and particle structure have an obvious influence on the duration time of the fast reaction stage. Furthermore, the influence of the external mass transfer and the change of effectiveness factor during the oxidation reaction process were discussed to investigate the controlling step of the reaction. It was concluded that the external mass transfer step hardly affects the reaction performance under the particle sizes normally used in CLOU. The value of the effectiveness factor increases as the reaction goes by, which means the chemical reaction resistance at grain scale increases resulting from the growing number of product islands on the grain surface.
Highlights
Chemical looping combustion (CLC) is a new combustion technology [1,2], where oxygen carriers are used to transport oxygen from the air reactor to the fuel reactor through the redox cycle
The chemical looping with oxygen uncoupling (CLOU) concept [6]
In high-O environments, system), the Cu2O tends to be oxidized by O22, generating CuO
Summary
Chemical looping combustion (CLC) is a new combustion technology [1,2], where oxygen carriers are used to transport oxygen from the air reactor to the fuel reactor through the redox cycle. Is based on CLC technology, where the oxygen carriers have oxygen release capacity. The research results of Mattisson et al [6] show that when petroleum coke is used as fuel, the conversion of the CLOU process is 50 times higher than that of traditional CLC process. Many researchers further explored the oxygen carriers suitable for CLOU technology [7,8,9,10,11,12,13,14,15,16]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.