Abstract

Infrared ship target detection is crucial technology in marine scenarios. Ship targets vary in scale throughout navigation because the distance between the ship and the infrared camera is constantly changing. Furthermore, complex backgrounds, such as sea clutter, can cause significant interference during detection tasks. In this paper, multiscale morphological reconstruction-based saliency mapping, combined with a two-branch compensation strategy (MMRSM-TBC) algorithm, is proposed for the detection of ship targets of various sizes and against complex backgrounds. First, a multiscale morphological reconstruction method is proposed to enhance the ship targets in the infrared image and suppress any irrelevant background. Then, by introducing a structure tensor with two feature-based filter templates, we utilize the contour information of the ship targets and further improve their intensities in the saliency map. After that, a two-branch compensation strategy is proposed, due to the uneven distribution of image grayscale. Finally, the target is extracted using an adaptive threshold. The experimental results fully show that our proposed algorithm achieves strong performance in the detection of different-sized ship targets and has a higher accuracy than other existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.