Abstract

ABSTRACT The mechanical behaviour of a polycrystalline silicon carbide across length scales was studied using Vickers indentation, focusing on the hardness, fracture toughness and failure mechanism of the material. For macroscopic and microscopic indentations, the hardness decreased with an increase in load, which was associated with the well-known indentation size effect as well as the internal flaws. For nanoindentation, severe plastic deformation was discovered beneath the imprints on the basal plane (0001) which is the most favourable crystallographic plane for dislocation movement. Alternative sources of plastic deformation, including deformation twinning and stacking faults, were found for nanoindentations with an increased load. Also, cracking was observed for indents made at 100 mN and above, which was used to study the fracture toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.