Abstract

A continuing challenge in atomic resolution microscopy is to identify significant structural motifs and their assembly rules in synthesized materials with limited observations. Here, we propose and validate a simple and effective hybrid generative model capable of predicting unseen domain boundaries in a potassium sodium niobate thin film from only a small number of observations, without expensive first-principles calculations or atomistic simulations of domain growth. Our results demonstrate that complicated domain boundary structures spanning 1 to 100 nanometers can arise from simple interpretable local rules played out probabilistically. We also found previously unobserved, significant, tileable boundary motifs that may affect the piezoelectric response of the material system, and evidence that our system creates domain boundaries with the highest configurational entropy. More broadly, our work shows that simple yet interpretable machine learning models could pave the way to describe and understand the nature and origin of disorder in complex materials, therefore improving functional materials design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call