Abstract

Molecular dynamics simulations require significant computational resources to generate modest time evolutions. Large active forces lead to large accelerations, requiring subfemtosecond integration time steps to capture the resultant high-frequency vibrations. It is often necessary to combine these fast dynamics with larger scale phenomena, creating a multiscale problem. A multiscale method has been previously shown to greatly reduce the time required to simulate systems in the continuum regime. A new multiscale formulation is proposed to extend the continuum formulation to the atomistic scale. A canonical ensemble model is defined using a modified Nóse–Hoover thermostat to maintain the constant temperature constraint. Results show a significant reduction in computation time mediated by larger allowable integration time steps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call