Abstract

A multiscale Galerkin finite element scheme based on the residual free bubble function method is proposed to generate stable and accurate solutions for the transport equations namely diffusion-reaction (DR), convection-diffusion (CD) and convection-diffusion-reaction (CDR) equations. These equations show multiscale behavior in reaction or convection dominated situations. The idea is based on the approximation of the definite integral of the interpolation function within the element, instead of the function approximation. The numerical experiments are performed using the bilinear Lagrangian elements. To validate the approach, the numerical results obtained for a benchmark problem are compared with the analytical solution in a wide range of Peclet and Damköhler numbers. The results show that the developed method is capable of generating stable and accurate solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.