Abstract

Abstract This paper investigates the elastic behavior and failure strength of three-dimensional braided composites by using a multi-scale finite element method. The analyses are performed under the representative unit cell scale and tow architecture scale. The heterogeneous material structure in a RUC is modeled by the multiphase finite element method. Three special element types, called yarn element, matrix element and mixed element, are derived. The correlation between different scales is derived based on the continuum mechanics and homogenization method. Effective modulus of 3D braided composites is predicted solely from the corresponding constituent properties and braided geometrical parameters. The bending strengths are determined by the failure criteria of the components. The predicted results compare favorably with available experimental data. Parametric studies are also performed to examine the effect of braiding angle on the resulting mechanical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.