Abstract
A novel methodology based on multiscale spectral and spatial information fusion using wavelet transform is proposed in order to classify very high resolution (VHR) satellite imagery. Conventional wavelet‐based feature extraction methods employ single windows of a fixed size, which are not satisfactory as the VHR imagery contains complex and multiscale objects. In this paper, spectral and spatial features are extracted based on a set of concentric windows around a central pixel in order to integrate the information across different windows/scales. The proposed method is made up of three blocks: (1) the conventional wavelet‐based feature extraction methods are extended from single band processing to multispectral bands, and from single window to multi‐windows, (2) two multiscale fusion algorithms are proposed to exploit the multiscale spectral and spatial information and (3) a support vector machine (SVM), a relatively new method of machine learning, is used to classify the multiscale spectral–spatial feature sets. The proposed classification method is evaluated on two VHR datasets and the results show that the multiscale approach can improve the classification accuracy in homogeneous areas while simultaneously preserving accuracy in edge regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.