Abstract

The conflict between strength and toughness is a long-standing challenge in advanced materials design. Recently, a fundamental bottom-up material design strategy has been demonstrated using cellulose nanopaper to achieve significant simultaneous increase in both strength and toughness. Fertile opportunities of such a design strategy aside, mechanistic understanding is much needed to thoroughly explore its full potential. To this end, here we establish a multiscale crack-bridging model to reveal the toughening mechanisms in cellulose nanopaper. A cohesive law is developed to characterize the interfacial properties between cellulose nanofibrils by considering their hydrogen bonding nature. In the crack-bridging zone, the hydrogen bonds between neighboring cellulose nanofibrils may break and reform at the molecular scale, rendering a superior toughness at the macroscopic scale. It is found that cellulose nanofibrils exhibit a distinct size-dependence in enhancing the fracture toughness of cellulose nanopaper. An optimal range of the length-to-radius ratio of nanofibrils is required to achieve higher fracture toughness of cellulose nanopaper. A unified law is proposed to correlate the fracture toughness of cellulose nanopaper with its microstructure and material parameters. The results obtained from this model agree well with relevant experiments. This work not only helps decipher the fundamental mechanisms underlying the remarkable mechanical properties of cellulose nanopaper but also provides a guide to design a wide range of advanced functional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.