Abstract
SUMMARYA component mode synthesis‐based multiscale approach is developed for dynamic analysis of nanostructures. The multiscale approach decomposes a nanostructure into atomistic and continuum regions and employs vibrational modes to connect the regions of different scales, enabling a reflectionless atomistic‐to‐continuum coupling. Dynamic response of the coupled atomistic and continuum regions is computed concurrently using a common time scale. Numerical results indicate that the multiscale approach has significant condensation and scaling advantages, and it is well suited for modeling and simulation of large and complex systems. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.