Abstract

A linearized stress intensity factor (SIF) is derived for concrete through a multiscale approach by considering the predominant process zone mechanisms such as aggregate bridging and microcracking. This is achieved by considering a bridging zone and a microcrack at the macrocrack tip. The bridging zone resists the crack growth through aggregate bridging mechanism. The SIF thus derived is further used in developing an analytical model which predicts the entire crack growth curve for plain concrete by making use of the concepts of dimensional analysis and self similarity in conjunction with the human population growth model. This model is validated using experimental data reported on normal strength, high strength and self consolidating concrete. Through sensitivity analyses it is shown that the specimen size plays an important role in the fatigue crack growth process of concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.