Abstract

The Mumford-Shah model is one of the most successful image segmentation models. However, existing algorithms for the model are often very sensitive to the choice of the initial guess. To make use of the model effectively, it is essential to develop an algorithm which can compute a global or near global optimal solution efficiently. While gradient descent based methods are well-known to find a local minimum only, even many stochastic methods do not provide a practical solution to this problem either. In this paper, we consider the computation of a global minimum of the multiphase piecewise constant Mumford-Shah model. We propose a hybrid approach which combines gradient based and stochastic optimization methods to resolve the problem of sensitivity to the initial guess. At the heart of our algorithm is a well-designed basin hopping scheme which uses global updates to escape from local traps in a way that is much more effective than standard stochastic methods. In our experiments, a very high-quality solution is obtained within a few stochastic hops whereas the solutions obtained with simulated annealing are incomparable even after thousands of steps. We also propose a multiresolution approach to reduce the computational cost and enhance the search for a global minimum. Furthermore, we derived a simple but useful theoretical result relating solutions at different spatial resolutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.