Abstract

We propose a single channel audio source separation method to alleviate the smearing effects caused by fixed time-frequency (TF) resolution Short-Time Fourier Transform (STFT). We introduce a multiresolution representation based on Non-negative Tensor Factorization (NTF) where each layer of the tensor represents the mixture signal at a different time-frequency resolution. In order to fuse the information at different layers, the source separation is modeled as a joint optimization problem where the optimal solution is derived based on the Kullback–Leibler (KL) divergence. The resynthesis is made through an additional adaptive weighted fusion procedure which combines the sources separated at different scales by maximizing energy concentration. Numerical results over a large sound database indicate that the proposed joint optimization scheme enhances the quality of the separated sources both in terms of the conventional and the perceptual distortion measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.