Abstract

With the advancement in computational science that is stepping into the Exascale era and experimental techniques that enable rapid reconstruction of the 3D microstructure, quantitative microstructure simulations at an unprecedented fidelity level are giving rise to new possibilities for linking microstructure to property. This paper presents recent advances in 3D computational modeling of ductile fracture in high toughness steels. Ductile fracture involves several concurrent and mutually interactive mechanisms at multiple length scales of microstructure. With serial sectioning tomographic techniques, a digital dataset of microstructure features associated with the fracture process has been experimentally reconstructed. In this study, primary particles are accurately and explicitly modeled while the secondary particles are modeled by a two scale multiresolution continuum model. The present numerical simulation captures detailed characteristics of the fracture process, such as zigzag crack morphology, critical void growth ratios, local stress triaxiality variation, and intervoid ligament structure. For the first time, fracture toughness is linked to multiscale microstructures in a realistic large 3D model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.