Abstract

We investigate the local correlation between the 1.4-GHz radio continuum and 60-μm far-infrared (FIR) emission within the Large Magellanic Cloud (LMC) on spatial scales between 0.05 and 1.5 kpc. On scales below ∼1 kpc, the radio-FIR correlation is clearly better than the correlation of the cold gas tracers (CO and H i) with either the radio or the FIR emission. For the LMC as a whole, there is a tight correlation between the radio and FIR emission on spatial scales above ∼50 pc. By decomposing the radio emission into thermal and non-thermal components, however, we show that the scale on which the radio-FIR correlation breaks down depends on the thermal fraction of the radio emission; regions that show a strong correlation to very small scales are the same regions where the thermal fraction of the radio emission is high. Contrary to previous studies of the local radio-FIR correlation in the LMC, we show that the slope of the relation between the radio and FIR emission is non-linear. In bright star-forming regions, the radio emission increases faster than linearly with respect to the FIR emission (power-law slope of ∼1.2), whereas a flatter slope of ∼0.6-0.9 applies more generally across the LMC. Our results are consistent with a scenario in which the ultraviolet photons and cosmic rays in the LMC have a common origin in massive star formation, but the cosmic rays are able to diffuse away from their production sites. Our results do not provide direct evidence for coupling between the magnetic field and the local gas density, but we note that synchrotron emission may not be a good tracer of the magnetic field if cosmic rays can readily escape the LMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.