Abstract

We present a new method for two-port vector network analyzer (VNA) calibration, which uses multiple offset-reflect standards and a flush thru connection. Offset-reflect standards consist of sections of the same uniform transmission line with different lengths, which are terminated with the same highly reflective load. The unknown propagation constant of the transmission line and the load reflection coefficient are then determined simultaneously with the VNA calibration coefficients. We compare our method with the multiline thru-reflect-line (TRL) method and show that both methods yield similar results. Our new multireflect-thru method is solely based upon dimensional parameters of the calibration standards. Therefore, like the multiline TRL method, it can be used to establish a traceable VNA calibration. Thus, the multireflect-thru method constitutes an alternative to the multiline TRL calibration in environments in which the use of transmission lines is troublesome, such as in the case of VNAs with very small coaxial and waveguide connectors. The multireflect-thru method is also useful in on-wafer measurements since it allows us to keep a constant distance between the probes, which reduces the impact of crosstalk and speeds up automated testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.