Abstract

To solve ODE systems with different time scales which are localized over the components, multirate time stepping is examined. In this paper we introduce a self-adjusting multirate time stepping strategy, in which the step size for a particular component is determined by its own local temporal variation, instead of using a single step size for the whole system. We primarily consider implicit time stepping methods, suitable for stiff or mildly stiff ODEs. Numerical results with our multirate strategy are presented for several test problems. Comparisons with the corresponding single-rate schemes show that substantial gains in computational work and CPU times can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call