Abstract
We present a multi-proxy paleoenvironmental study on a 10,400 cal. yr peat sequence from an ombrotrophic bog in coastal British Columbia, Canada. Pollen, non-pollen palynomorph, plant macrofossil, and physicochemical analyses (bulk density, %C, %N, δ13C, and δ15N isotopes) were used to document changes in vegetation, bog development, and carbon and nitrogen accumulation. Pollen assemblages indicate that regional vegetation in the warm, relatively dry early Holocene was mixed coniferous forest with scattered Pseudotsuga menziesii. Herbaceous peat with a C:N of ~28, combined with Nuphar microfossils and relatively high %N, suggests the presence of a herb-dominated peatland with standing water and/or bog pools. Carbon and nitrogen accumulation were at their highest during this early Holocene period at mean rates of 30.6 and 1.2 g/m2/cal. yr, respectively. By 8000 cal. yr BP and under a cooler, wetter climate, northern Vancouver Island supported Tsuga heterophylla rainforest similar to today. Decreasing relative water table, inferred from testate amoebae and fungal remains, facilitated the establishment of a Sphagnum bog by 8000 cal. yr BP with abundant ericaceous shrubs after 5000 cal. yr BP. Temporal variation in carbon accumulation rates corresponds with changes in plant functional types and hydrological conditions: rates were lowest in the early to mid-Holocene during accumulation of Sphagnum peat (7.1 g/m2/cal. yr) and increased in late Holocene ligneous peat (12.4 g/m2/cal. yr). Our multi-proxy approach not only demonstrates the overarching control of climate on bog development and carbon and nitrogen accumulation, with seasonality likely playing a major role, but also highlights the strong influence of autogenic processes at a local scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.