Abstract

Many existing clustering algorithms use a single prototype to represent a cluster. However sometimes it is very difficult to find a suitable prototype for representing a cluster with an arbitrary shape. One possible solution is to employ multi-prototype instead. In this paper, we propose a minimum spanning tree (MST) based multi-prototype clustering algorithm. It is a split and merge scheme. In the split stage, the suitable patterns are determined to be prototypes in terms of their degrees in the corresponding MST. Then the fake prototypes in sparse density regions are recognized and removed. In the merge stage, a two-step merge strategy is designed to group the prototypes. The proposed algorithm can deal with datasets consisting of clusters with different shapes, sizes and densities. The experiment results show the effectiveness on the synthetic and real datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.