Abstract

In this article we focus on multiprocessor system-on-chip (MPSoC) architectures for human heart electrocardiogram (ECG) real time analysis as a hardware/software (HW/SW) platform offering an advance relative to state-of-the-art solutions. This is a relevant biomedical application with good potential market, since heart diseases are responsible for the largest number of yearly deaths. Hence, it is a good target for an application-specific system-on-chip (SoC) and HW/SW codesign. We investigate a symmetric multiprocessor architecture based on STMicroelectronics VLIW DSPs that process in real time 12-lead ECG signals. This architecture improves upon state-of-the-art SoC designs for ECG analysis in its ability to analyze the full 12 leads in real time, even with high sampling frequencies, and its ability to detect heart malfunction for the whole ECG signal interval. We explore the design space by considering a number of hardware and software architectural options. Comparing our design with present-day solutions from an SoC and application point-of-view shows that our platform can be used in real time and without failures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.