Abstract
Abstract The Salp swarm algorithm (SSA) is one of the most recent metaheuristic optimization algorithms. SSA has been used successfully to solve optimization problems in different research areas such as machine learning, engineering design, wireless networks, image processing, mobile robotics, and energy. In this article, we present a multi-threaded implementation of the SSA algorithm. Each thread executes an SSA algorithm that shares information among the swarms to get a better solution. The best partial solutions of each swarm intersect in a similar way of genetic algorithms. The experiments with nineteen benchmark functions (unimodal, multimodal, and composite) show the results obtained with this new algorithm are better than those achieved with the original algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.