Abstract

The traditional view that natural allotropes are more stable than artificially synthesized structures is widely accepted. For instance, graphite and diamond are more energetically favorable than other new carbon allotropes no matter whether they are experimentally prepared or theoretically predicted. Surprisingly, we find that a family of multiporous carbon (N-diaphenes) could be thermodynamically more stable than natural diamond with the increase of its feature size parameter N. Multiporous N-diaphenes exhibit extremely strong anisotropic mechanical properties and their ideal strength linearly depends on the corresponding yield strain. Density functional theory (DFT) calculations reveal that the bandgap hierarchy of N-diaphenes is inherited from their precursors. In addition, N-diaphenes exhibit superior capability for hydrogen storage due to their large specific surface areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.