Abstract

In science and engineering, multi-objective optimization problems usually contain multiple complex constraints, which poses a significant challenge in obtaining the optimal solution. This paper aims to solve the challenges brought by multiple complex constraints. First, this paper analyzes the relationship between single constrained Pareto Front (SCPF) and their common Pareto Front sub-constrained Pareto Front (SubCPF). Next, we discussed the SCPF, SubCPF, and Unconstrainti Pareto Front (UPF)’s help to solve constraining Pareto Front (CPF). Then further discusses what kind of cooperation should be used between multiple populations constrained multi-objective optimization algorithm (CMOEA) to better deal with multi-constrained multi-objective optimization problems (mCMOPs). At the same time, based on the discussion in this paper, we propose a new multi-population CMOEA called MCCMO, which uses a new cooperation mechanism. MCCMO uses C+2 (C is the number of constraints) populations to find the UPF, SCPF, and SubCPF at an appropriate time. Furthermore, MCCMO uses the newly proposed Activation Dormancy Detection (ADD) to accelerate the optimization process and uses the proposed Combine Occasion Detection (COD) to find the appropriate time to find the SubCPF. The performance on 32 mCMOPs and real-world mCMOPs shows that our algorithm can obtain competitive solutions on MOPs with multiple constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call