Abstract

By the use of the Poincaré–Birkhoff fixed point theorem, we prove a multiplicity result for periodic solutions of a second order differential equation, where the nonlinearity exhibits a singularity of repulsive type at the origin and has linear growth at infinity. Our main theorem is related to previous results by Rebelo (1996, 1997) [4,5] and Rebelo and Zanolin (1996) [6,7], in connection with a problem raised by del Pino et al. (1992) [1].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.