Abstract

Antimicrobial resistance stemming from indiscriminate usage of antibiotics has emerged as a global healthcare issue with substantial economic implications. The inefficacy of commonly used antibiotics combined with superfluous consumption has worsened the issue. Rapid antimicrobial susceptibility testing (AST) to antibiotics can be advantageous in thwarting bacterial infections. Therefore, this study developed a simple nanoliter array-based microfluidic platform for performing rapid AST, which can handle and manipulate liquids both in nanoliter and microliter volumes. The platform consisted of two microfluidic devices, one for performing AST and another for diluting antibiotics and these two were suitably integrated. The microfluidic device used for generating microarrays for AST experiments is single-layered (no air layer) and has no active microvalves and air hole, which makes the device easy to fabricate and use. The loading process ensures uniform distribution of bacteria and relies on displacing the air from microarrays through porous polydimethylsiloxane membranes. Furthermore, the chip for dilution consisted of active microfluidic components, and could prepare and test seven different concentrations of antibiotics, which make the platform multiplexed and be capable of evaluating minimum inhibitory concentrations (MICs), a clinically relevant parameter. MIC determination requires less number of bacteria (∼2000) and hence shortens the pre-culture step, i.e. bacteria culture in blood and urine. This automated system demonstrated AST and evaluated MICs using Escherichia coli and two antibiotics, including ampicillin and streptomycin, and the results were ascertained using a gold standard method. It only took 8-9 h to perform AST, which is substantially less compared to a conventional process and hence is of high clinical utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.