Abstract

The predominant determinants of α-thalassemia are deletions in the human α-globin gene cluster. Arapid DNA-based assay is needed for mass screening in thalassemia-prevention programs. Herein, we established a novel quadruplex TaqMan qPCR gene dosage assay with two separate combination reactions. The assay directly determined the copy number of human α-globin genes based on relative quantitation of three target genes (HBA2, HBA1, and HBZ or HBPA1) versus a control gene (CREBBP). The assay showed good accuracy, with mean intra-assay and interassay variations of 3.31% ± 1.02% and 5.49% ± 0.32%, respectively. The assay was evaluated using 678 pretyped clinical DNA samples containing six α-thalassemia deletions in 13 genotypes and 186 normal samples previously screened by multiplex ligation-dependent probe amplification or gap PCR. As determined by the 2(-ΔΔCq) method, deleted gene dosage ratios were 0.46 to 0.60 in heterozygotes, 0.0 in homozygotes, and 0.97 to 1.07 in nondeleted samples. We found 99.3% concordance between the quantitative PCR and multiplex ligation-dependent probe amplification or gap-PCR results. Furthermore, routine screening for α-thalassemia deletions was performed on 3000 random samples in a blind analysis. Results for all 279 positives, which had different deletions, were fully coincident with results from standard methods. We also identified two novel deletions confirmed by multiplex ligation-dependent probe amplification. Assays using the novel method are simple and suitable for rapid genotyping and mass screening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.