Abstract

Multiplex polymerase chain reaction (PCR) of microsatellite loci allows for simultaneous amplification of two or more pairs of primers in a single PCR reaction; hence, it is cost and time effective. However, very few attempts have been reported in non-model species. In this study, by combining a genome-based de novo development and cross-species application approach, a multiplex PCR system comprising 5 PCR reactions of 33 microsatellites consisting of 26 novel genomic and 7 literature-sourced loci was tested for polymorphisms, cross-species transferability, and the ability to assess genetic diversity and population structure of three walnut species (Juglans spp.). We found that the genome-based approach is more efficient than other methods. An allelic ladder was developed for each locus to enhance consistent genotyping among laboratories. The population genetic analysis results showed that all 33 loci were successfully transferred across the three species, showing high polymorphism and a strong genetic structure. Hence, the multiplex PCR system is highly applicable in walnut species. Furthermore, we propose an efficient pipeline to characterize and genotype polymorphic microsatellite loci. The novel toolbox developed here will aid future ecology and evolution studies in walnut and could serve as a model for other plant species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.