Abstract
There is a plethora of information embedded in a tissue section that the conventional IHC understands only partially. Predictive biomarkers for precision immuno-oncology heavily dependent on the spatial arrangement of cells and the co-expression patterns in the tissue sections. Here we have explored the versatility of indirect multiplex immunofluorescence (mIF) and indirect multiplex immunohistochemistry (mIHC) for the labeling of breast cancer prognostic markers in routinely processed, formalin-fixed paraffin-embedded (FFPE) tissues at high resolution. The multiplex immunohistochemistry protocol utilized sequential staining for the chromogenic immunolabelling of Estrogen Receptor α (ERα) or Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor 2 (HER2), and Nucleoside diphosphate kinase 1 (NM23) by multicolor chromogens in different combinations. A feasible workflow for multiplex immunofluorescence was also effectively standardized for ERα, PR, and HER2 using combinations of commercially available Alexa Fluor and Quantum dots semiconductor nanocrystal conjugated secondary antibodies. Multiplex chromogenic immunolabeling revealed differential expression of the markers on the same slide. Kappa statistics revealed perfect agreement with uniplex immunohistochemistry. For multiplex fluorescence approach, surface receptor detection using Quantum dots and Alexa fluor dyes for cytoplasmic or nuclear markers performed well for profiling multiple co-localized biomarkers on a single paraffin tissue section. The technique developed reveals additional information such as co-expression, spatial relationships, and tumor heterogeneity, providing a deeper insight into developing combinatorial therapeutic strategies in clinical care. This high throughput workflow complements the outcomes of traditional IHC while saving tissue, time, labour, and reagents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.