Abstract

Intracerebral transplantation of embryonic ventral mesencephalic tissue is a potential treatment for patients with Parkinson's disease for whom medical management is unsatisfactory. Neural transplantation for parkinsonism has been studied experimentally in animal models of Parkinson's disease for more than two decades. These animal studies have shown significant graft survival, synapse formation, graft induced-dopamine release, and behavioural recovery in transplanted animals. Encouraged by these results, clinical programs have been initiated over the past 15 years; more than 250 patients worldwide have undergone neural transplantation. Both animal and clinical studies indicate that neural transplantation has the potential to become a valuable treatment option for Parkinson's disease. However, while many transplant recipients obtain clinically useful symptom relief, in all cases functional recovery is incomplete. Certain symptoms do not respond well to transplant therapy, and those symptoms that do typically do not resolve completely. This has spurred efforts to optimize the transplant procedure. One important approach is exploring novel methods such as multiple site transplantation. This transplantation strategy results in a more complete reinnervation of the dopaminergic circuitry that is affected in Parkinson's disease. In principle, multiple site transplantation should provide a more satisfactory resolution of symptoms. Here we review the progress made in multiple site neural transplantation for Parkinson's disease. The effects of intrastriatal, intranigral, intrasubthalamic nucleus, and intrapallidal grafts in animal models of Parkinson's disease are analysed. The current data suggest that intrastriatal grafts alone are inadequate to promote complete functional recovery. A multiple target strategy may restore dopaminergic input to affected basal ganglia nuclei and improve outcomes of neural transplantation in Parkinson's disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.