Abstract

ABSTRACTIn many real-world optimization problems, the underlying objective and constraint function(s) are evaluated using computationally expensive iterative simulations such as the solvers for computational electro-magnetics, computational fluid dynamics, the finite element method, etc. The default practice is to run such simulations until convergence using termination criteria, such as maximum number of iterations, residual error thresholds or limits on computational time, to estimate the performance of a given design. This information is used to build computationally cheap approximations/surrogates which are subsequently used during the course of optimization in lieu of the actual simulations. However, it is possible to exploit information on pre-converged solutions if one has the control to abort simulations at various stages of convergence. This would mean access to various performance estimates in lower fidelities. Surrogate assisted optimization methods have rarely been used to deal with such classes of problem, where estimates at various levels of fidelity are available. In this article, a multiple surrogate assisted optimization approach is presented, where solutions are evaluated at various levels of fidelity during the course of the search. For any solution under consideration, the choice to evaluate it at an appropriate fidelity level is derived from neighbourhood information, i.e. rank correlations between performance at different fidelity levels and the highest fidelity level of the neighbouring solutions. Moreover, multiple types of surrogates are used to gain a competitive edge. The performance of the approach is illustrated using a simple 1D unconstrained analytical test function. Thereafter, the performance is further assessed using three 10D and three 20D test problems, and finally a practical design problem involving drag minimization of an unmanned underwater vehicle. The numerical experiments clearly demonstrate the benefits of the proposed approach for such classes of problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.