Abstract

Many-objective optimization problems (MaOPs) contain four or more conflicting objectives to be optimized. A number of efficient decomposition-based evolutionary algorithms have been developed in the recent years to solve them. However, computationally expensive MaOPs have been scarcely investigated. Typically, surrogate-assisted methods have been used in the literature to tackle computationally expensive problems, but such studies have largely focused on problems with 1–3 objectives. In this paper, we present an approach called hybrid surrogate-assisted many-objective evolutionary algorithm to solve computationally expensive MaOPs. The key features of the approach include: 1) the use of multiple surrogates to effectively approximate a wide range of objective functions; 2) use of two sets of reference vectors for improved performance on irregular Pareto fronts (PFs); 3) effective use of archive solutions during offspring generation; and 4) a local improvement scheme for generating high quality infill solutions. Furthermore, the approach includes constraint handling which is often overlooked in contemporary algorithms. The performance of the approach is benchmarked extensively on a set of unconstrained and constrained problems with regular and irregular PFs. A statistical comparison with the existing techniques highlights the efficacy and potential of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.