Abstract

A new shifted Legendre-Gauss collocation method is proposed for the solution of Volterra’s model for population growth of a species in a closed system. Volterra’s model is a nonlinear integrodifferential equation on a semi-infinite domain, where the integral term represents the effects of toxin. In this method, by choosing a step size, the original problem is replaced with a sequence of initial value problems in subintervals. The obtained initial value problems are then step by step reduced to systems of algebraic equations using collocation. The initial conditions for each step are obtained from the approximated solution at its previous step. It is shown that the accuracy can be improved by either increasing the collocation points or decreasing the step size. The method seems easy to implement and computationally attractive. Numerical findings demonstrate the applicability and high accuracy of the proposed method.

Highlights

  • A new shifted Legendre-Gauss collocation method is proposed for the solution of Volterra’s model for population growth of a species in a closed system

  • Volterra’s model is a nonlinear integrodifferential equation on a semi-infinite domain, where the integral term represents the effects of toxin

  • By choosing a step size, the original problem is replaced with a sequence of initial value problems in subintervals

Read more

Summary

Introduction

A new shifted Legendre-Gauss collocation method is proposed for the solution of Volterra’s model for population growth of a species in a closed system. Volterra’s model is a nonlinear integrodifferential equation on a semi-infinite domain, where the integral term represents the effects of toxin.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.