Abstract

Perturbation of a steadily propagating crack with a straight edge is solved using the method of matched asymptotic expansions (MAE). This provides a simplified analysis in which the inner and outer solutions are governed by distinct mechanics. The inner solution contains the explicit perturbation and is governed by a quasi-static equation. The outer solution determines the radiation of energy away from the tip, and requires solving dynamic equations in the unperturbed configuration. The outer and inner expansions are matched via the small parameter ϵ = L/l defined by the disparate length scales: the crack perturbation length L and the outer length scale l associated with the loading. The method is illustrated for a scalar crack model and then applied to the elastodynamic mode I problem. The crack-front wave-dispersion relation is found by requiring that the energy release rate is unaltered under perturbation and dispersive properties of the crack-front wave speed are described for the first time. The example problems considered demonstrate the potential of MAE for moving-boundary-value problems with multiple scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call