Abstract

<p style='text-indent:20px;'>In this work, a multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is proposed to solve a coupled chemotaxis-fluid model. In the evolution equation of the proposed LBM, Beam-Warming (B-W) scheme is used to enhance the numerical stability. In numerical experiments, at first, the comparison between the classical LBM and the present LBM with B-W scheme is carried out by simulating blow up phenomenon of the Keller-Segel (K-S) model. Numerical results show that the stability of the present LBM with B-W scheme is better than the classical one. Then, the second order convergence rate of the proposed B-W scheme is verified in the numerical study of the coupled Navier-Stokes (N-S) K-S model. Finally, through solving the coupled chemotaxis-fluid model, the formation of falling bacterial plumes is numerically investigated. Numerical results agree well with existing ones in the literature.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.