Abstract
ObjectiveTo establish a model to predict high cytomegalovirus (CMV) immunoglobulin (Ig)G avidity index (AI) using clinical information, to contribute to the mental health of CMV-IgM positive pregnant women. MethodsWe studied 371 women with IgM positivity at ≤14 w of gestation. Information on the age, parity, occupation, clinical signs, IgM and G values, and IgG AI was collected. The IgG AI cut-off value for diagnosing congenital infection was calculated based on a receiver operating characteristic curve analysis. Between-group differences were assessed using the Mann–Whitney U-test or χ2 analysis. The factors predicting a high IgG AI were determined using multiple logistic regression. ResultsThe women were divided into high or low IgG AI groups based on an IgG AI cut-off value of 31.75. There were significant differences in the IgG and IgM levels, age, clinical signs, and the number of women with one parity between the two groups. In a multiple logistic regression analysis, IgM and the number of women with one parity were independent predictors. This result helped us establish a mathematical model that correctly classified the IgG AI level for 84.6% of women. ConclusionWe established a highly effective model for predicting a high IgG AI immediately after demonstrating IgM positivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.