Abstract

In the entity extraction task, there are some complex extraction problems, such as nested entity, entity boundary recognition, context ambiguity, and multi-instance entity recognition. Entity nesting is an important challenge in relational extraction. The main reason of entity nesting problem is that the boundary information between entities is not clear. In order to solve the entity nesting problem at the fragment level, while preserving the relationship between fragments with the same characteristics and improving efficiency, we proposed a brand new fragment annotation method. On the basis of traditional fragment annotation method, combined with pointer annotation method, we designed an annotation method of "ergodic enumeration + group mapping". On the basis of this method, an entity extraction model is designed: Span-Extraction Based Entity Extraction Model (LMA). Our model underwent a series of validations in the English data sets New York Times(NYT) and WEBNLG, showing significant improvements over the baseline model F1. It can effectively alleviate the above problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.