Abstract
ABSTRACTIn high-dimensional regression, the presence of influential observations may lead to inaccurate analysis results so that it is a prime and important issue to detect these unusual points before statistical regression analysis. Most of the traditional approaches are, however, based on single-case diagnostics, and they may fail due to the presence of multiple influential observations that suffer from masking effects. In this paper, an adaptive multiple-case deletion approach is proposed for detecting multiple influential observations in the presence of masking effects in high-dimensional regression. The procedure contains two stages. Firstly, we propose a multiple-case deletion technique, and obtain an approximate clean subset of the data that is presumably free of influential observations. To enhance efficiency, in the second stage, we refine the detection rule. Monte Carlo simulation studies and a real-life data analysis investigate the effective performance of the proposed procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.