Abstract

Any engineering component possesses roughness on its surface when it is observed microscopically, including electrical connectors. Electrical connectors usually consist of a spring and a pin. In this study, the spring part is in the shape of a compliant curved beam whereas the pin one is of a flat form and these two parts are in contact during operation. This work presents a multi-physics (structural, electrical and thermal) finite element model of the bulk region of an electrical connector. The rough surfaces of the spring and pin parts are considered using a multi-scale sinusoidal rough surface (MSRS) contact model. The resulting coupled multi-physics connector model is used to analyze the performance of the connector while the applied current is incremented from 5 to 20 A. As expected, this produced a proportional rise in voltage drop and temperature across the bulk regions of the connector parts. The coupled multi-physics model together with the MSRS model should provide greater accuracy in the prediction of contact forces, electrical contact resistance (ECR) and thermal contact resistance (TCR). The present work also provides valuable information on stresses and strains distributions, current flow and temperature variations in the bulk regions of the electrical connector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.