Abstract
Micromachining of glass has gained importance due to numerous applications of glass in microfluidics, optics, electronics, and biotechnology industry. Electrochemical discharge machining (ECDM) is an emerging nontraditional process which has the potential for micromachining of glass with minimal surface damages. Material removal during the machining of glass by ECDM involves thermal machining by electrical discharges between the tool and the gas film. The energy of these discharges is influenced by the gas film characteristics and affects the machining results. In this study, a combined approach of finite element simulation and experimentation is used to study the ECDM process to understand the impact of gas film characteristics on the overcut in machining. The multiphase simulation setup incorporates a combined electrochemical system of glass and electrolyte. The changes in the gas film characteristics due to the variations in the level of electrolyte and the corresponding changes in the overcut are studied. It was observed that the gas film thickness increased with an increase in the level of electrolyte and the gas film stability showed an opposite trend. This resulted in an increase in the overcut in the machining with the increase in the level of electrolyte. This trend observed in the simulation was validated with experimentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.