Abstract

The nanoscale multiphase phase-field model for stress and temperature-induced multivariant martensitic transformation under large strains developed by the authors in Basak and Levitas (J Mech Phys Solids 113:162–196, 2018) is revisited, the issues related to the gradient energy and coupled kinetic equations for the order parameters are resolved, and a thermodynamically consistent non-contradictory model for the same purpose is developed in this paper. The model considers \(N+1\) order parameters to describe austenite and N martensitic variants. One of the order parameters describes austenite\(\leftrightarrow \)martensite transformations, and the remaining N order parameters, whose summation is constrained to the unity, describe the transformations between the variants. A non-contradictory gradient energy is used within the free energy of the system to account for the energies of the interfaces. In addition, a kinetic relationship for the rate of the order parameters versus thermodynamic driving forces is suggested, which leads to a system of consistent coupled Ginzburg–Landau equations for the order parameters. An approximate general crystallographic solution for twins within twins is presented, and the explicit solution for the cubic to tetragonal transformations is derived. A large strain-based finite element method is developed for solving the coupled Ginzburg–Landau and elasticity equations, and it is used to simulate a 3D complex twins within twins microstructure. A comparative study between the crystallographic solution and the simulation results is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call