Abstract

A multiphase model, developed in the context of elastoplasticity, is applied to the simulation and design of reinforced earth retaining structures. The main feature of this model is to combine the advantage of a homogenization approach, as regards its computational efficiency, with the ability to account for a specific failure condition at the interface between the soil and the reinforcing strips, which may have a decisive influence on the behavior of the structure. A particular emphasis is put on the stability analysis of this kind of reinforced soil structures, formulated within the framework of the yield design theory. Making use of a generalized rigid block failure mechanism, the stability of a reinforced earth retaining wall is investigated by means of the kinematic approach, leading to upper bound estimates for the stability factor of the structure, which are then favorably compared with the results of an elastoplastic analysis. Special attention is paid to assessing in a quantitative way how a specific soil–strip failure condition affects the stability of the reinforced earth structure as a whole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.