Abstract

A new algorithm, multipath probabilistic data association (MPDA), for initiation and tracking in over-the-horizon radar (OTHR) is described. MPDA is capable of exploiting multipath target signatures arising from discrete propagation modes that are resolvable by the radar. Nonlinear measurement models exhibiting multipath target signatures in azimuth, slant range, and Doppler are used. Tracking is performed in ground coordinates and therefore depends on the provision of estimates of virtual ionospheric heights to achieve coordinate registration. Although the propagation mode characteristics are assumed to be known, their correspondence with the detections is not required to be known. A target existence model is included for automatic track maintenance. Numerical simulations for four resolvable propagation modes are presented that demonstrate the ability of the technique to initiate and maintain track at probabilities of detection of 0.4 per mode in clutter densities for which conventional probabilistic data association (PDA) has a high probability of track loss, and suffers from track bias. A nearest neighbor version of MPDA is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.