Abstract

Several dsRNA bands (approx. 0.6-7 kbp in size) were recovered from tissues of mosaic-diseased fig seedlings which contained the enveloped round structures known as double membrane bodies (DMBs). blast analysis of a 4353 and a 1120 nt sequence from the two largest RNA segments showed homology with the polymerase and the putative glycoprotein precursor genes of negative-sense single-stranded RNA viruses of the family Bunyaviridae. Negative- and positive-sense riboprobes designed from both RNA segments hybridized to two bands of approximately 7 and 2.3 kbp in Northern blots of dsRNAs. Thus, these segments were identified as putative RNA-1 and RNA-2 of a novel virus for which the name fig mosaic virus (FMV) is proposed. Identity levels of predicted amino acids of the protein encoded by FMV RNA-1 with those of species of the family Bunyaviridae and European mountain ash ringspot-associated virus (EMERaV) were 28 and 54 %, respectively. RNA-2 showed 38 % identity at the amino acid level only with EMARaV. RNA-1 segment contained five conserved motifs (A-E) and an endonucleolytic centre of comparable genes of L RNA of bunyaviruses and EMARaV RNA-1. In a phylogenetic tree constructed with RdRp sequences, EMARaV grouped with FMV in a clade distinct from those of all bunyavirus genera. The consistent association of DMBs with mosaic symptoms and the results of molecular investigations strongly indicate that DMBs are particles of FMV, the aetiological agent of fig mosaic disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.