Abstract

Blood pressure (BP) is an essential physiological indicator to identify and determine health status. Compared with the isolated BP measurement conducted by traditional cuff approaches, cuffless BP monitoring can reflect the dynamic changes in BP values and is more helpful to evaluate the effectiveness of BP control. In this paper, we designed a wearable device for continuous physiological signal acquisition. Based on the collected electrocardiogram (ECG) and photoplethysmogram (PPG), we proposed a multi-parameter fusion method for noninvasive BP estimation. An amount of 25 features were extracted from processed waveforms and Gaussian copula mutual information (MI) was introduced to reduce feature redundancy. After feature selection, random forest (RF) was trained to realize systolic BP (SBP) and diastolic BP (DBP) estimation. Moreover, we used the records in public MIMIC-III as the training set and private data as the testing set to avoid data leakage. The mean absolute error (MAE) and standard deviation (STD) for SBP and DBP were reduced from 9.12 ± 9.83 mmHg and 8.31 ± 9.23 mmHg to 7.93 ± 9.12 mmHg and 7.63 ± 8.61 mmHg by feature selection. After calibration, the MAE was further reduced to 5.21 mmHg and 4.15 mmHg. The result showed that MI has great potential in feature selection during BP prediction and the proposed multi-parameter fusion method can be used for long-term BP monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call