Abstract
Abstract This manuscript addresses the parameter and state estimation problem for continuous time nonlinear systems with unknown slowly time-varying parameters, which are assumed to belong to a known compact set. The problem is tackled by using the multi-observer approach under the supervisory framework, which generates parameter and state estimates by using a finite number of sample points of the parameter set, a bank of observers, a set of monitoring signals and a selection criterion. This note proposes a novel dynamic sampling policy for the multi-observer technique and studies its convergence properties. We prove that the parameter and state estimation errors are ultimately bounded where the ultimate bounds can be made arbitrarily small if the parameter varies sufficiently slowly, and the number of samples is sufficiently large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.