Abstract

Typically performed by supervised machine learning algorithms, sentiment analysis is highly useful for extracting subjective information from text documents online. Most approaches that use ensemble learning paradigms toward sentiment analysis involve feature engineering in order to enhance the predictive performance. In response, we sought to develop a paradigm of a multiobjective, optimization-based weighted voting scheme to assign appropriate weight values to classifiers and each output class based on the predictive performance of classification algorithms, all to enhance the predictive performance of sentiment classification. The proposed ensemble method is based on static classifier selection involving majority voting error and forward search, as well as a multiobjective differential evolution algorithm. Based on the static classifier selection scheme, our proposed ensemble method incorporates Bayesian logistic regression, naïve Bayes, linear discriminant analysis, logistic regression, and support vector machines as base learners, whose performance in terms of precision and recall values determines weight adjustment. Our experimental analysis of classification tasks, including sentiment analysis, software defect prediction, credit risk modeling, spam filtering, and semantic mapping, suggests that the proposed classification scheme can predict better than conventional ensemble learning methods such as AdaBoost, bagging, random subspace, and majority voting. Of all datasets examined, the laptop dataset showed the best classification accuracy (98.86%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.