Abstract
In this paper, we develop a multi-objective stochastic programming approach for supply chain design under uncertainty. Demands, supplies, processing, transportation, shortage and capacity expansion costs are all considered as the uncertain parameters. To develop a robust model, two additional objective functions are added into the traditional comprehensive supply chain design problem. So, our multi-objective model includes (i) the minimization of the sum of current investment costs and the expected future processing, transportation, shortage and capacity expansion costs, (ii) the minimization of the variance of the total cost and (iii) the minimization of the financial risk or the probability of not meeting a certain budget. The ideas of unreliable suppliers and capacity expansion, after the realization of uncertain parameters, are also incorporated into the model. Finally, we use the goal attainment technique to obtain the Pareto-optimal solutions that can be used for decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.