Abstract

This paper proposes a variation on a sliding mode control approach that provides significant energy savings for the control of pneumatic servo systems. The control methodology is formulated by first decoupling the standard four-way spool valve used for pneumatic servo control into two three-way valves, then using the resulting two control degrees of freedom to simultaneously satisfy both the sliding mode sliding condition and a dynamic constraint that minimizes airflow. The control formulation is presented, followed by experimental results that indicate significant energetic savings with essentially no compromise in tracking performance relative to a standard four-way spool valve approach. Specifically, relative to standard four-way spool valve pneumatic servo actuator control, the experimental results indicate energy saving of 27 to 45%, depending on the desired tracking frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call